On efficient training of word classes and their application to recurrent neural network language models

نویسندگان

  • Rami Botros
  • Kazuki Irie
  • Martin Sundermeyer
  • Hermann Ney
چکیده

In this paper, we investigated various word clustering methods, by studying two clustering algorithms: Brown clustering and exchange algorithm, and three objective functions derived from different class-based language models (CBLM): two-sided, predictive and conditional models. In particular, we focused on the implementation of the exchange algorithm with improved speed. In total, we compared six clustering methods in terms of runtime and perplexity (PP) of the CBLM on a French corpus, and show that our accelerated implementation of exchange algorithm is up to 114 times faster than the original and around 6 times faster than the best implementation of Brown clustering we could find, while performing about the same (slightly better) in PP. In addition, we conducted a keyword search experiment on the Babel Lithuanian task (IARPA-babel304b-v1.0b), which showed that CBLM improves the word error rate (WER) but not the keyword search performance. Furthermore, we used these clustering techniques for the output layer of a recurrent neural network (RNN) language model (LM) and we show that in terms of PP of the RNN LM, word classes trained under the predictive model perform slightly better than those trained under other criteria we considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of artificial neural networks on drought prediction in Yazd (Central Iran)

In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...

متن کامل

A Study on Neural Network Language Modeling

An exhaustive study on neural network language modeling (NNLM) is performed in this paper. Different architectures of basic neural network language models are described and examined. A number of different improvements over basic neural network language models, including importance sampling, word classes, caching and bidirectional recurrent neural network (BiRNN), are studied separately, and the...

متن کامل

An efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems

Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...

متن کامل

Improved Learning through Augmenting the Loss

We present two improvements to the well-known Recurrent Neural Network Language Models(RNNLM). First, we use the word embedding matrix to project the RNN output onto the output space and already achieve a large reduction in the number of free parameters while still improving performance. Second, instead of merely minimizing the standard cross entropy loss between the prediction distribution and...

متن کامل

A Recurrent Neural Network to Identify Efficient Decision Making Units in Data Envelopment Analysis

In this paper we present a recurrent neural network model to recognize efficient Decision Making Units(DMUs) in Data Envelopment Analysis(DEA). The proposed neural network model is derived from an unconstrained minimization problem. In theoretical aspect, it is shown that the proposed neural network is stable in the sense of lyapunov and globally convergent. The proposed model has a single-laye...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015